$2C_{3}H_{8}NO_{3}^{+}.SO_{4}^{2-}$	H_2O
-------------------------------------	--------

Refinement

=	
Refinement on F	$\Delta \rho_{\rm max} = 0.296 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.034	$\Delta \rho_{\rm min} = -0.250 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.032	Extinction correction:
S = 1.950	Zachariasen (1968) type
1483 reflections	2 Gaussian isotropic
181 parameters	Extinction coefficient:
All H atoms refined	$1.09(2) \times 10^{-5}$
Weighting scheme based	Scattering factors from Inter-
on measured e.s.d.'s	national Tables for X-ray
$(\Delta/\sigma)_{\rm max} = 0.003$	Crystallography (Vol. IV)

Table 1. Selected geometric parameters (Å, °)

\$1—O1 <i>s</i>	1.457 (2)	O5—C4	1.322 (3)
\$1O2s	1.469 (2)	O6C6	1.432 (4)
\$1—O3s	1.485(2)	N1—C2	1.480 (4)
\$1—O4s	1.477 (2)	N2—C5	1.493 (3)
01—C1	1.207 (3)	C1—C2	1.510 (4)
02—C1	1.324 (3)	C2—C3	1.529 (4)
O3—C3	1.414 (4)	C4—C5	1.513 (4)
O4—C4	1.194 (4)	C5—C6	1.524 (4)
O1s—S1—O2s	111.5(1)	N1-C2-C3	111.2 (3)
O1s-S1-O3s	109.9(1)	C1—C2—C3	111.2 (3)
01 <i>s</i> —S1—O4 <i>s</i>	108.8(1)	O3—C3—C2	110.8 (3)
O2s-S1-O3s	108.0(1)	04C405	125.6 (3)
O2s—S1—O4s	109.1(1)	O4—C4—C5	123.7 (3)
O3s—S1—O4s	109.6 (1)	O5-C4-C5	110.6 (3)
01—C1—O2	124.8 (3)	N2—C5—C4	108.2 (2)
01—C1—C2	124.0 (3)	N2C5C6	110.8 (2)
02—C1—C2	111.2 (3)	C4—C5—C6	111.0 (3)
N1—C2—C1	107.7 (2)	O6—C6—C5	112.3 (3)

Table 2. Hydrogen-bonding geometry (Å, °)

$D - H \cdots A$	D—H	$\mathbf{H} \cdots \mathbf{A}$	$D \cdots A$	$D = H \cdots A$
N1—H5···O1s	0.81	2.17	2.923 (4)	155
N2—H11···O1s ⁱ	1.03	2.02	3.02(1)	163
N1—H3···O2 s^i	0.97	1.90	2.839 (4)	161
N2-H12···O2s	0.89	1.95	2.822 (3)	163
N1—H4···O3 s^{ii}	1.03	1.85	2.873 (4)	172
N2—H13· · · O3s ⁱⁱ	1.10	1.73	2.831 (4)	168
O1W—H18···O3s	1.04	1.84	2.82(1)	154
O6—H16· · · O4s ⁱ	0.78	1.90	2.683 (3)	177
O1WH17···O4s ⁱⁱⁱ	0.87	1.98	2.76(1)	149
N2—H13· · · O1s ⁱⁱ	1.10	2.54	3.25(1)	121
$N1 - H4 \cdots O2s^{ii}$	1.03	2.64	3.23(1)	116
$N2 - H11 \cdot \cdot \cdot O4s^{i}$	1.03	2.38	3.110 (4)	127
O2—H1···O6 [™]	0.96	1.66	2.613 (3)	171
O5—H9· · ·O3`	0.92	1.67	2.589(3)	176
O3—H8· · ·O1₩ ^{*1}	0.89	1.71	2.59(1)	167
O3—H8···O2₩ ^{*i}	0.89	1.75	2.60(1)	159
O1₩—H17···O2₩ ^{*ii}	0.87	2.68	2.840 (4)	134
Symmetry codes: (i) $\frac{1}{2} - x$, $1 - y$, $z - \frac{1}{2}$; (ii) $\frac{1}{2} - x$, $1 - y$, $\frac{1}{2} + z$; (iii)				
$\frac{1}{2} - x, 1 - y, z - \frac{1}{2}; (1v) - x, \frac{1}{2} + y, -\frac{1}{2} - z; (v) - x, y - \frac{1}{2}, -\frac{1}{2} - z; (v)$				
$x = 1, y, z;$ (vii) $\frac{3}{2} = x, 1 = y, z = \frac{1}{2}.$				

All H atoms were found *via* difference Fourier syntheses and refined. The correct enantiomorph under the noncentrosymmetric space group was determined by inverting the coordinates during the final cycles of least-square refinement. In the final cycles of refinement, non-H atoms were refined anisotropically, while H atoms were fixed. The water molecule was treated as a disordered model with an occupancy factor of 0.5 for both O1W and O2W, and was refined isotropically.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992). Data reduction: MSC/AFC Diffractometer Control Software. Program(s) used to solve structure: TEXSAN (Molecular Structure Corporation, 1992). Program(s) used to refine structure: TEXSAN. The authors thank the National Science Foundation, USA, and Ministry of Higher Education, Beijing, People's Republic of China, for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1155). Services for accessing these data are described at the back of the journal.

References

- Aakeroy, C. B., Bahra, G. S., Brown, C. R., Hitchcock, P. B., Patell, Y. & Seddon, K. R. (1995). *Acta Chem. Scand.* **49**, 762–767.
- Feeder, N. & Jones, W. (1993). Acta Cryst. B49, 541-546.
- Feeder, N. & Jones, W. (1996). Acta Cryst. C52, 919-923.
- Gorbitz, C. H. & Gundersen, E. (1996). Acta Chem. Scand. 50, 537-543.
- Kinbara, K. Hashimoto, Y. Sukegawa, M., Nohira, H. & Saigo, K. (1996). J. Am. Chem. Soc. 118, 3441-3449.
- Lehninger, A. L. (1975). In *Biochemistry*, 2nd ed. New York: Worth Publications.
- Molecular Structure Corporation (1992). *MSC/AFC Diffractometer Control Software*. Version 4.3.0. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1992). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
- Swenson, D. C., Habermann, S. M. & Murphy, K. P. (1996). Acta Cryst. C52, 383-387.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1997). C53, 1288-1290

(11*R*,11a*S-trans*)-11-Ethylthio-2,3,5,10,11,11a-hexahydro-1*H*-pyrrolo-[2,1-*c*][1,4]benzodiazepin-5-one

Maciej Kubicki,^{*a*} Maria B. Szkaradzińska^{*b*} and Penelope W. Codding^{*c*}

^aLaboratory of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, ^bDepartments of Chemistry, Pharmacology and Therapeutics, University of Calgary, Calgary, Alberta, Canada T2N 1N4, and ^cDepartment of Chemistry, University of Victoria, PO Box 1700, Victoria, BC, Canada V8W 2Y2. E-mail: mkubicki@chem.amu.edu.pl

(Received 27 February 1997; accepted 10 April 1997)

Abstract

The pyrrolo ring in the title compound, $C_{14}H_{18}N_2OS$, exhibits a flattened envelope conformation, while the benzodiazepine ring exists as a twisted boat. The

intermolecular N—H···O hydrogen bonds form helical chains of molecules connected by a 4_3 screw axis. The structure is disordered: both the pyrrolo and the ethyl-thio fragments occupy two alternative positions, with site-occupancy factors of 0.55 (1) and 0.45 (1).

Comment

Pyrrolo[2, 1-c][1,4]benzodiazepine derivatives exhibit antitumor activity, with two well known examples being anthramycin (Kohn, 1975) and tomaymycin (Arima, Kohsaka, Tamura, Imanaka & Sakai, 1972). Several tricyclic analogues have been synthesized and screened against P388 lymphocytic leukemia (Kaneko, Wong, Doyle, Rose & Bradner, 1985). These compounds are believed to act through covalent DNA-drug linkages (Hurley, 1977). The title compound, (I), is one of the simplest members of the family, because it has no substituents in either the aromatic or pyrrolo rings; however, the methoxy group of the antitumor compounds is replaced by an ethylthio group. Therefore, it could serve as the basic model for further structure-activity correlation studies.

The crystal structure is significantly disordered; the disorder involves both the pyrrolo and ethylthio moieties. Nevertheless, the refinement with weak restraints applied to the geometric parameters of the pyrrolo moiety was successful and the quality of the results justifies a reasonable discussion. The title compound consists of three fused rings: the aromatic ring is almost strictly planar, with a maximum deviation from the least-squares plane of 0.013 (6) Å; the conformation of the seven-membered benzodiazepine ring is close to a twisted boat; and the pyrrolo ring is a flattened envelope, with C1, C11a, N4 and C3 almost coplanar, and C2 significantly out of plane, by 0.49(2) and 0.29(4) Å for C2 and C2', respectively. The relevant torsion angles are listed in Table 2. A similar conformation pattern is observed in related compounds, for example, anthramycin methyl ester (Mostad, Rømming & Storm, 1978; Arora, 1979) and tomaymycin (Arora, 1981). The overall twist, defined as the dihedral angle between the leastsquares plane of the aromatic ring and the planar part of the pyrrolo ring, is $17.0(6)^{\circ}$ for the more occupied and $33.7(6)^{\circ}$ for the less occupied alternatives, and is intermediate between the values for tomaymycin, $9.0(1)^{\circ}$, and anthramycin methyl ester, $45.0(1)^{\circ}$.

For compounds with a carbonyl group at C11 (see, for example, Neidle, Webster, Jones & Thurston, 1991), the overall conformation pattern is similar. The presence of an sp^2 -hybridized C atom (C11) causes the approximate planarity of the C9a—N10—C11—C11a fragment, as compared with the torsion angle of -48.7 (6)° in (I). The similar overall shape of the compounds results from the associated change in the C5a—C9a—N10—C11 fragment: it is almost planar in (I) [torsion angle 2.7 (8)°] and significantly folded in the above-mentioned compounds (torsion angles of $ca - 44^\circ$). It is noteworthy that these angles within the pyrrolo ring have similar absolute values but different signs.

In the crystal structure, the intermolecular N10— $H10 \cdots O5$ hydrogen bonds make infinite helical chains of the molecules connected by a 4₃ screw axis along the [001] direction.

Fig. 1. Displacement ellipsoid (50% probability) representation of the title compound with the numbering scheme; the H atoms are drawn as spheres of arbitrary radii. Only the part of the molecule with the larger occupancy factor is shown.

Experimental

The preparation of the title compound has been described elsewhere (Kaneko, Wong & Doyle, 1983). The sample was provided by Bristol-Myers Co., Syracuse, NY, USA.

Crystal data

$C_{14}H_{18}N_2OS$	Cu $K\alpha$ radiation
$M_r = 262.36$	$\lambda = 1.54178 \text{ Å}$
Tetragonal	Cell parameters from 25
P43	reflections
a = 8.9850(8) Å	$\theta = 14-39^{\circ}$
c = 17.1652(10) Å	$\mu = 1.989 \text{ mm}^{-1}$
$V = 1385.8 (2) \text{ Å}^3$	T = 293 (2) K
Z = 4	Block
$D_x = 1.258 \text{ Mg m}^{-3}$	$0.3 \times 0.2 \times 0.2$ mm
D_m not measured	Colorless

C14H18N2OS

Data collection		Clla—Cl	'-C2'-C3'		18 (3))
Enraf–Nonius CAD-4F	$\theta_{\rm max} = 74.73^{\circ}$	C1	-C3N4 -N4C11a		- 30.2 ((10) (13)
diffractometer	$h = -11 \rightarrow 11$	C2	-Clla-Cl		6.1 ((11)
$\omega/2\theta$ scans	$k = 0 \rightarrow 11$	N4			-24.3 ((12)
Absorption correction: none	$l = 0 \rightarrow 21$	C1'-C2'	-C3'-N4		-20(3))
3162 measured reflections	3 standard reflections	C2'-C3'	-N4 $-C11a$		-50/	(19)
1472 independent reflections	s frequency: 33 min	N4	-C1'-C2'		-8(2)
1347 reflections with		C9a—N1	0-C11-S12		73.2	(7)
$I > 2\sigma(D)$	intensity decay. The	C1C11	a—C11—S12		53.0	(7)
P = 0.044		N10	1—S12—C13		69.1	(8)
$R_{\text{int}} = 0.044$		C11—SL C9: N1	2 - C13 - C14		- 172.51	(10)
Refinement			a = C11 = S12		75.9	(9)
		N10-C1	1-S12'-C13	,	59.9	(7)
Refinement on F^2	Extinction correction:	C11—S13	2'—C13'—C14	1′	-175.2	(13)
$R[F^2 > 2\sigma(F^2)] = 0.053$ wR(F ²) = 0.148	SHELXL93 (Sheldrick, 1993)	Table 3. I	Hydrogen-b	onding g	eometry (1	Å, °)
S = 1.083	Extinction coefficient:	ע א מ	ם ב	н 4	D 4	DHA
1472 reflections	0.0041 (16)	$D = H^{1} \cdots A$ N10 = H10 \cdots O5'	0.87(5)	1.97 (5)	2.823 (6)	165 (4)
223 parameters $w = 1/[\sigma^2(F_c^2) + (0.078P)^2]$	Scattering factors from International Tables for	Symmetry code: (i)	$y, 1 - x, \frac{1}{4} + 1$		- (-,	
	Crustallography (Vol C)	The relatively los	v data_to_na	rameter ra	tio (6.6) fe	or this stud

The relatively low data-to-parameter ratio (6.6) for this study is related to the disorder and associated additional number of refined parameters. For H10, both positional and isotropic displacement parameters were refined. All other H atoms were refined as a riding model with an ideal geometry.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: EN-PROC (Rettig, 1978). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: Stereochemical Workstation (Siemens, 1989). Software used to prepare material for publication: SHELXL93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1103). Services for accessing these data are described at the back of the journal.

References

- Arima, K., Kohsaka, M., Tamura, G., Imanaka, H. & Sakai, H. (1972). J. Antibiot. 25, 437-444.
 - Arora, S. K. (1979). Acta Cryst. B35, 2945-2948.
- Arora, S. K. (1981). J. Antibiot. 34, 462-464.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hurley, L. H. (1977). J. Antibiot. 30, 349-370.
- Kaneko, T., Wong, H. & Doyle, T. W. (1983). Tetrahedron Lett. 24, 5165-5168.
- Kaneko, T., Wong, H., Doyle, T. W., Rose, W. C. & Bradner, W. T. (1985). J. Med. Chem. 28, 388-392.
- Kohn, K. W. (1975). Antibiotics, 3, 3-11.
- Mostad, A., Rømming, C. & Storm, B. (1978). Acta Chem. Scand. Ser. B, 32, 639-645.
- Neidle, S., Webster, G. D., Jones, G. B. & Thurston, D. E. (1991). Acta Cryst. C47, 2678-2680.
- Rettig, S. (1978). ENPROC. Data Reduction Program for Enraf-Nonius CAD-4F Diffractometer. University of British Columbia, Vancouver, BC, Canada.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1989). Stereochemical Workstation Operation Manual. Release 3.4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Refinement on F^2	Extinction correction:
$R[F^2 > 2\sigma(F^2)] = 0.053$	SHELXL93 (Sheldrick,
$wR(F^2) = 0.148$	1993)
S = 1.083	Extinction coefficient:
1472 reflections	0.0041 (16)
223 parameters	Scattering factors from
$w = 1/[\sigma^2(F_0^2) + (0.078P)^2]$	International Tables for
+ 0.3355 <i>P</i>]	Crystallography (Vol. C)
where $P = (F_{0}^{2} + 2F_{c}^{2})/3$	Absolute configuration:
$(\Delta/\sigma)_{\rm max} = -0.002$	Flack (1983)
$\Delta \rho_{\rm max} = 0.230 \ {\rm e} \ {\rm \AA}^{-3}$	Flack parameter = $0.06(5)$
$\Delta \rho_{\rm min} = -0.236 \ {\rm e} \ {\rm \AA}^{-3}$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\tilde{A}^2)

	U _{eq} =	$(1/3)\Sigma_i\Sigma_jU^{ij}$	$a_i^*a_j^*\mathbf{a}_i.\mathbf{a}_j.$	
	x	v	z	U_{eq}
Clla	0.8622 (8)	0.5068 (6)	0.0558(3)	0.072 (2)
C1'†	0.923 (2)	0.6125 (15)	0.1232(7)	0.071 (4)
C2'†	1.010 (4)	0.736(3)	0.0919(11)	0.136 (8)
C3'†	0.969(2)	0.747 (2)	0.0069 (8)	0.071 (5)
N4	0.9004 (5)	0.5900 (4)	-0.0146 (2)	0.0596 (10)
CI‡	0.8217 (19)	0.6383 (13)	0.1147(7)	0.083 (4)
C2İ	0.9030(15)	0.7650 (10)	0.0832(7)	0.072 (3)
C3±	0.9033 (18)	0.7444 (18)	-0.0041 (9)	0.082 (5)
C5	0.9054 (4)	0.5374 (6)	-0.0869(3)	0.0536 (10)
05	0.9357 (4)	0.6250 (5)	-0.1410(2)	0.0715 (11)
C5a	0.8824 (5)	0.3762 (6)	-0.1028 (3)	0.0573 (11)
C6	0.9484 (8)	0.3293 (9)	-0.1731 (4)	0.089 (2)
C7	0.9381 (10)	0.1857(11)	-0.1999 (5)	0.113 (3)
C8	0.8646 (8)	0.0808 (9)	-0.1566 (4)	0.097 (2)
C9	0.7959 (6)	0.1216(7)	-0.0878 (3)	0.0705 (14)
C9a	0.8034 (5)	0.2672 (6)	-0.0594 (3)	0.0539 (11)
N10	0.7297 (5)	0.2914 (5)	0.0094(2)	0.0579 (10)
C11	0.7132 (6)	0.4247 (5)	0.0479(3)	0.0625 (12)
S12‡	0.5940 (4)	0.5820 (4)	0.0213(2)	0.0659 (13)
C13±	0.4168 (10)	0.4902 (17)	0.0413(11)	0.107 (5)
C141	0.2918 (13)	0.575 (2)	0.0176 (14)	0.132 (6)
S12'†	0.5589(3)	0.5194 (5)	-0.0093 (2)	0.0475 (12)
C13'†	0.4125 (11)	0.3852 (17)	0.0036 (9)	0.074 (4)
C14'+	0.2811 (13)	0.422(2)	-0.0398(12)	0.109(7)

† Site occupancy = 0.446 (9). ‡ Site occupancy = 0.554 (9).

Table 2. Selected torsion angles (°)

C5-C5a-C9a-N10	-0.3(7)
C5a-C9a-N10-C11	2.7 (8)
C9a-N10-C11-C11a	-48.7 (6)
N10-C11-C11a-N4	82.3 (5)
C11-C11a-N4-C5	-52.7(7)
C11a—N4—C5—C5a	- 5.0 (8)
N4C5aC9a	25.7 (7)
C11a-C1-C2-C3	33.4 (15)